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A Motivation
AMultiphase CFD and coarse grid simulation
A Development osubgrid drag closure

AValidation of drag model in all fluidization regimes

A Summary of results
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A Fluidized bed has attracted attention for several decades and has been widely used
In chemical, petrochemical, and energy industries.

A Such as FCC processes, polymerization processes, MTO processes, combustion proc
biomass thermal conversionbiomass vapor phase upgrading (VPU) process

A Advantages: higithroughput capabilities, excellent heat and mass transfer characterist
and superior reaction rates of gaid mixtures.
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A Fluidized bed: A typical fluidized bed is a cylindrical column in which solid particles are
suspended in a fluid at a certain fluid velocity.

A Increasing of gas velocity, several fluidization regimes can be observed.

A Gassolid fluidization is very complex.
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A From macroscale to microscale
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Macroscale Mesoscale Microscale
_ . . A Particle interactions
A Large length and time scale A Particle segregation .
_ . . A Particle shape
A Large number of particles A Clustering or bubbling
. A Phase change
A Turbulence modulation
A Wakes
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A Drag models for gasolid flow simulation
A AsStandar do dr ag hamogdredusolida disgibutioa sssuthptionn
A They work best fofine grid simulations where solids are more homogeneous
A Coarsegrid simulations tend toverpredictthe drag force.

A Finegrid simulation is very expensive, especially for

A Small particles belong tGeldartA (dp=~100 micron}
A Grid-independentequires computational grig= ~108p
A Fine grid simulation of industriadcale reactors is impractical, such as FCC unit2D?); 3D, O(1).
A Coarse grid si mloDOgis requniredvor industratale reatdr simulations.
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CoarseGrid Simulations Need SubGrid Closures TL [tcioroct
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019m C-target result with proper coargeid

model

Bedheight A Coarse grid simulation needs to
m eXp. .
£ account for sulgrid effect.

A Subgrid gassolid drag model is
the most critical part.

2D A The homogeneous drag model has

the form
Q T 0 Qoi

A The heterogeneous drag model
introduces a correction factor, C
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A Homogeneous drag modelXpplicable to highly resolved simulations of small scale systens
A Derived from experiment or correlations: Wen and Yu, 1996; Ergun, I582aspow 1994

A Derived from PRDNS of randomly arranged particle8VK (Beetstraet al., 2005)HKL (Hill

et al., 2001)TGS (Tennetiet al., 2011)

A Heterogeneous drag model considering mesoscale structureXpplicable to coarsegrid

simulations of large scale systems, used for scalp)
A Derived frommesoscalstructure methodEMMS (Li andKwauk, 1994)
v/ A Derived from fine grid twefluid model:Igci et al., 2008Sarkar et al., 2016
A Derived from fine grid CFEDEM model:RadlandSundaresar?014

A Derived from PRDNS of cluster configurations: MM3/ehrabadiet al., 201%
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A Homogeneous drag model A Heterogeneous drag model
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A In theory, the heterogeneity index should approach 1 near the maximurapsaidisg
limit, the flow becomes homogeneous and nogtidh corrections are needed.

A A new drag model was developed.

A A more realistic limit was imposed at the dense regime.
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Determine the Optimal Drag Model for Fluidization Simulation (¥

AA comprehensive evaluation of
drag models fotsroup A particles
was performed

A Eight drag models were evaluated

A Detailed three-dimensional
simulations were conducted

A Arange of fluidization regimes
were modeled

A Model results were compared to
experimental datafrom the
literature
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